
LMM Workshop
Giovanna Del Sordo

Linear mixed-effects workshop - HEST Quantitative
Methods Workshop Series
The data used in this example come from Brown (2021): An Introduction to Linear Mixed
Effects Modeling in R. doi: https://doi.org/10.1177/2515245920960351

Install and load libraries

Base R (the set of tools that is built into R) has a host of functions, but to create mixed-
effects models you will need to install a specific package called lme4 (Bates et al., 2020).

Packages, also referred to as libraries, are sets of functions that work together and are not
already built into Base R. To install lme4, run the following line of code (you should run this
line of code only if you have not already installed the package):

#install.packages("lme4")

Once the package is installed, it is always on your computer, and you will not need to run
that line of code again. Whenever you want to create mixed-effects models, you will need
to load the installed package, which will give you access to all the functions you need (you
need to rerun this line of code every time you start a new R session). The following line of
code will load the lme4 package:

library(lme4)

Load data into R

You can simply replace the path to your own path where your data file is located. To read
csv files, another package, “readr”, is necessary

#install.packages("readr")
library(readr)

file_path_csv <- "/Users/giovannadelsordo/Documents/Documents - Giovanna’s
MacBook Air/Post Doc NMSU/Workshops:Talks/HEST workshop series 2025/Code and
data/rt_dummy_data.csv"
data <- read_csv(file_path_csv)

Convert categorical variables from characters to factors
data$PID <- as.factor(data$PID)
data$modality <- as.factor(data$modality)
data$stim <- as.factor(data$stim)

Running these two lines create two elements in the R “Environment” on the right. One is
simply the path to the csv file, and the other is a dataframe containing the data. The data
file contains:

- PID: participants’ numbers (random effect).

- RT: reaction time in milliseconds (dependent variable).

- modality: condition with two levels: “Audio-only” and “Audiovisual” (fixed factor).

- stim: the words presented to participants in the primary task (random effect).

Fitting a simple linear regression
model_regression <- lm(RT ~ 1 + modality, data = data)
summary(model_regression)

Call:
lm(formula = RT ~ 1 + modality, data = data)

Residuals:
 Min 1Q Median 3Q Max
-814.52 -210.46 -25.52 174.54 1436.54

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 1041.464 3.001 347.00 <2e-16 ***
modalityAudiovisual 83.057 4.207 19.74 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 309.7 on 21677 degrees of freedom
Multiple R-squared: 0.01766, Adjusted R-squared: 0.01761
F-statistic: 389.7 on 1 and 21677 DF, p-value: < 2.2e-16

Fitting a random-intercepts model
lmer(outcome ~ 1 + predictor + (1|participant) + (1|item), data = data)

lmer() – This is the function that builds a linear mixed-effects model. It comes from the
lme4 package.

outcome – The dependent variable (the thing you’re trying to predict).

predictor – The independent variable (the factor you think affects the outcome).

1 + predictor – This part describes the fixed effects. The 1 represents the intercept (the
average starting point).

(1 | participant) and (1 | item) – These are the random effects. The pipe symbol (|) means
“varies by.” So (1 | participant) means “each participant has their own intercept.” (1 | item)
means “each item has its own intercept.”

Together, they tell the model that both participants and items can differ in their baseline
responses.

This model has random intercepts for participants and items, but no random slopes. That
means the model assumes that while people and words may start from different baselines,
the overall effect of the predictor (the slope) is the same for everyone.

Also, note:

The 1 in the fixed-effects part (1 + predictor) is optional — R includes an intercept by
default. But the 1 in the random-effects part ((1 | participant)) is not optional, because you
have to tell R what can vary across the grouping factor.

The actual model is:

model_intercept <- lmer(RT ~ 1 + modality + (1|PID) + (1|stim), data = data)
summary(model_intercept)

Linear mixed model fit by REML ['lmerMod']
Formula: RT ~ 1 + modality + (1 | PID) + (1 | stim)
 Data: data

REML criterion at convergence: 302861.5

Scaled residuals:
 Min 1Q Median 3Q Max
-3.3572 -0.6949 -0.0205 0.5814 4.9120

Random effects:
 Groups Name Variance Std.Dev.
 stim (Intercept) 360.2 18.98
 PID (Intercept) 28065.7 167.53
 Residual 67215.3 259.26
Number of obs: 21679, groups: stim, 543; PID, 53

Fixed effects:
 Estimate Std. Error t value
(Intercept) 1044.449 23.164 45.09
modalityAudiovisual 82.525 3.529 23.38

Correlation of Fixed Effects:
 (Intr)
modltyAdvsl -0.078

This model only contains random intercepts, but no random slopes. However, based on
topic knowledge, you might already expect that both participants and words might differ in
the extent to which they are affected by the modality manipulation. We will therefore fit a
model that includes both by-participant and by-item random slopes for modality. Failing to
include random slopes would amount to assuming that all participants and words respond
to the modality effect in exactly the same way, which is an unreasonable assumption to
make.

Fitting a random intercepts and random slope model
lmer(outcome ~ 1 + predictor + (1 + predictor|participant) + (1 +
predictor|item), data = data)

Here, the portions in parentheses indicate that both the intercept (indicated by the 1,
which in this case is optional because it is implied by the presence of random slopes but is
included for clarity) and the predictor (indicated by + predictor) vary by participants and
items. In plain language, this syntax means “predict the outcome from the predictor and
the random intercepts and slopes for participants and items, using the data I provide.”

The model above includes only one predictor, but if a model includes multiple predictors
the researcher may decide which of the predictors can vary by participant or item; in other
words, any fixed effect to the left of the interior parentheses can be included to the left of
the pipe (inside the interior parentheses), provided that including it is justified given the
design of the experiment. For example, if we wanted to include a second predictor that
varied within both participants and items, but there was no theoretical motivation for
including by-item random slopes for the second predictor—or, alternatively, if the second
predictor varied between items, so including the by-item random slope would not be
justified given the experimental design—the syntax would look like this:

lmer(outcome ~ 1 + predictor1 + predictor2 + (1 + predictor1 +
predictor2|participant) + (1 + predictor1|item), data = data)

The actual model is:

model_full <- lmer(RT ~ 1 + modality + (1 + modality|PID) + (1 +
modality|stim), data = data)

This is the “full” model (i.e., the model including the fixed effects of interest and all
theoretically motivated random effects).

But! Is this model the best fit to the data?

Likelihood Ratio Tests (LRTs)

The “likelihood” is a measure of how well the model’s parameters explain the data we
actually observed.
A higher likelihood means the model fits the data better.

The Likelihood Ratio Test compares two models:

• A reduced model (simpler)

• A full model (more complex)

It asks: does the full model fit the data significantly better?

Full model = model with all fixed effects, random intercepts and random
slopes of interest
model_full <- lmer(RT ~ 1 + modality + (1 + modality|PID) + (1 +
modality|stim),
 data = data, REML = FALSE)

Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv,
:
Model failed to converge with max|grad| = 0.00251373 (tol = 0.002, component
1)

Does this full model fit the data better than models with less parameters?

reduced model without modality (fixed effect)
model_reduced_modality <- lmer(RT ~ 1 + (1 + modality|PID) + (1 +
modality|stim),
 data = data, REML = FALSE)
Does the effect of modality is significant? Does it help to explain the
observed data?
Warning message: The model "failed to converge". We will come back to
that...

We use the function "anova()" to test which model is better. It is a Chi-
square test
anova(model_full, model_reduced_modality)

Data: data
Models:
model_reduced_modality: RT ~ 1 + (1 + modality | PID) + (1 + modality | stim)
model_full: RT ~ 1 + modality + (1 + modality | PID) + (1 + modality | stim)
 npar AIC BIC logLik -2*log(L) Chisq Df
model_reduced_modality 8 302449 302513 -151217 302433
model_full 9 302419 302491 -151200 302401 32.385 1
 Pr(>Chisq)
model_reduced_modality
model_full 1.264e-08 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

• Reduced model → includes only the intercept and random effects (no fixed effect for
modality).

• Full model → same as above, but adds the fixed effect of modality.

They are nested models: one is a simpler version of the other.

Does a model that includes information about the modality in which words are presented
fit the data better than a model that does not include that information?

Interpretation: All the values for AIC, BIC, logLik, and -2*log(L) have smaller values in the
full model. The p-value is significant. –> The full model fit the data best. The model
including the modality effect provides a better fit.

What if we have several fixed effects to compare?
#install.packages("afex")
library(afex)

Welcome to afex. For support visit: http://afex.singmann.science/

- Functions for ANOVAs: aov_car(), aov_ez(), and aov_4()
- Methods for calculating p-values with mixed(): 'S', 'KR', 'LRT', and 'PB'
- 'afex_aov' and 'mixed' objects can be passed to emmeans() for follow-up
tests
- Get and set global package options with: afex_options()
- Set sum-to-zero contrasts globally: set_sum_contrasts()
- For example analyses see: browseVignettes("afex")

Attaching package: 'afex'

The following object is masked from 'package:lme4':

 lmer

mixed(RT ~ 1 + modality + (1 + modality|PID) + (1 + modality|stim), data =
data, method = 'LRT')

Contrasts set to contr.sum for the following variables: modality, PID, stim

REML argument to lmer() set to FALSE for method = 'PB' or 'LRT'

Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv,
:
unable to evaluate scaled gradient

Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv,
:
Model failed to converge: degenerate Hessian with 1 negative eigenvalues

Warning: Model failed to converge with 1 negative eigenvalue: -9.6e+02

Warning: lme4 reported (at least) the following warnings for 'modality':
 * unable to evaluate scaled gradient
 * Model failed to converge: degenerate Hessian with 1 negative eigenvalues

Mixed Model Anova Table (Type 3 tests, LRT-method)

Model: RT ~ 1 + modality + (1 + modality | PID) + (1 + modality | stim)
Data: data
Df full model: 9
 Effect df Chisq p.value
1 modality 1 32.54 *** <.001

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1

For this specific model, we get the same results as the “anova()” function. The “mixed()”
function becomes more interesting when several fixed effects are tested.

Warning: the mixed() function only works for FIXED EFFECTS, not for random effects.

What if we want to tests the random effects?

You will need to go back to the anova() function.

Full model (both intercepts and slopes for PID and stim)
model_full <- lmer(RT ~ 1 + modality +
 (1 + modality | PID) +
 (1 + modality | stim),
 data = data, REML = FALSE)

Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv,
:
Model failed to converge with max|grad| = 0.00251373 (tol = 0.002, component
1)

Remove the random slope for stim
model_no_slope_stim <- lmer(RT ~ 1 + modality +
 (1 + modality | PID) +
 (1 | stim),
 data = data, REML = FALSE)

anova(model_full, model_no_slope_stim)

Data: data
Models:
model_no_slope_stim: RT ~ 1 + modality + (1 + modality | PID) + (1 | stim)
model_full: RT ~ 1 + modality + (1 + modality | PID) + (1 + modality | stim)
 npar AIC BIC logLik -2*log(L) Chisq Df Pr(>Chisq)
model_no_slope_stim 7 302416 302472 -151201 302402
model_full 9 302419 302491 -151200 302401 1.1261 2 0.5695

Adding a random slope for stimulus does NOT significantly improve model fit.

Remove the random slope for stim
model_no_slope_stim <- lmer(RT ~ 1 + modality +
 (1 + modality | PID) +
 (1 | stim),
 data = data, REML = FALSE)

Remove both random slopes (intercepts only for both)
model_intercepts_only <- lmer(RT ~ 1 + modality +
 (1 | PID) +
 (1 | stim),
 data = data, REML = FALSE)

anova(model_no_slope_stim, model_intercepts_only)

Data: data
Models:
model_intercepts_only: RT ~ 1 + modality + (1 | PID) + (1 | stim)
model_no_slope_stim: RT ~ 1 + modality + (1 + modality | PID) + (1 | stim)
 npar AIC BIC logLik -2*log(L) Chisq Df
Pr(>Chisq)
model_intercepts_only 5 302884 302924 -151437 302874
model_no_slope_stim 7 302416 302472 -151201 302402 472.19 2 < 2.2e-
16

model_intercepts_only
model_no_slope_stim ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The model with random slopes for participants (model_no_slope_stim) fits the data
much better than the model with only random intercepts (model_intercepts_only).

In plain terms: Participants differ not only in their overall speed (intercept), but also in how
strongly the effect of modality influences their RTs.

Final model
model_final <- lmer(RT ~ 1 + modality +
 (1 + modality | PID) +
 (1 | stim),
 data = data, REML = FALSE)

Participants (PID):

• Random intercepts: each participant has their own baseline reaction time (RT).

• Random slopes for modality: each participant has their own modality effect (the
slope can vary).

Stimuli (stim):

• Random intercepts only: each stimulus has its own baseline RT.

• No random slope for modality: the effect of modality is assumed to be the same
across all stimuli.

Why this structure?

It’s theoretically justified: participants are expected to differ in both overall speed and how
they respond to modality, but the modality effect itself should be consistent across
stimuli.

Interpretation of summary() output

The likelihood ratio test comparing our full and reduced models indicated that the modality
effect was significant, but it did not tell us about the direction or magnitude of the effect.
So how do we assess whether the audiovisual condition resulted in slower or faster
response times? And how do we gain insight into the variability across participants and
items that we asked the model to estimate? To answer these questions, we need to
examine the model output via the summary() function.

Note: p-values will only be shown if you have loaded the “afex” package.

summary(model_final)

Linear mixed model fit by maximum likelihood . t-tests use Satterthwaite's
 method [lmerModLmerTest]
Formula: RT ~ 1 + modality + (1 + modality | PID) + (1 | stim)
 Data: data

 AIC BIC logLik -2*log(L) df.resid
 302415.8 302471.7 -151200.9 302401.8 21672

Scaled residuals:
 Min 1Q Median 3Q Max
-3.3599 -0.6959 -0.0136 0.5897 4.9906

Random effects:
 Groups Name Variance Std.Dev. Corr
 stim (Intercept) 399.6 19.99
 PID (Intercept) 28006.4 167.35
 modalityAudiovisual 7566.1 86.98 -0.16
 Residual 65313.6 255.57
Number of obs: 21679, groups: stim, 543; PID, 53

Fixed effects:
 Estimate Std. Error df t value Pr(>|t|)
(Intercept) 1044.15 23.14 53.19 45.126 < 2e-16 ***
modalityAudiovisual 83.15 12.45 52.86 6.678 1.5e-08 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:
 (Intr)
modltyAdvsl -0.179

Post hoc tests

When your model includes multiple fixed effects, interactions, or a factor with more
than two levels, you’ll often need to conduct post hoc tests to explore specific
comparisons.

For linear mixed-effects models, these tests are typically performed using the emmeans
package

#install.packages("emmeans")
library(emmeans)

To run post hoc tests, you should use the emmeans() function, feed it your model, and the
specific fixed factor you want to perform the post hoc tests on.

emmeans(model_final, pairwise ~ modality)

Note: D.f. calculations have been disabled because the number of observations
exceeds 3000.
To enable adjustments, add the argument 'pbkrtest.limit = 21679' (or larger)
[or, globally, 'set emm_options(pbkrtest.limit = 21679)' or larger];
but be warned that this may result in large computation time and memory use.

Note: D.f. calculations have been disabled because the number of observations
exceeds 3000.
To enable adjustments, add the argument 'lmerTest.limit = 21679' (or larger)
[or, globally, 'set emm_options(lmerTest.limit = 21679)' or larger];
but be warned that this may result in large computation time and memory use.

$emmeans
 modality emmean SE df asymp.LCL asymp.UCL
 Audio-only 1044 23.1 Inf 999 1089
 Audiovisual 1127 24.2 Inf 1080 1175

Degrees-of-freedom method: asymptotic
Confidence level used: 0.95

$contrasts
 contrast estimate SE df z.ratio p.value
 (Audio-only) - Audiovisual -83.1 12.5 Inf -6.678 <.0001

Degrees-of-freedom method: asymptotic

The first table show what are called estimated marginal means or model-adjusted means.
These are simply the average predicted values of reaction time for each condition — here,
the Audio-only and Audiovisual modalities — as estimated by our model. They’re called
model-adjusted because they take into account all the other parts of the model, like the
random effects, rather than being simple raw averages.

So, in our results:

• The predicted mean reaction time for Audio-only trials is about 1044 ms,

• And for Audiovisual trials, it’s about 1127 ms.

The “SE” column shows the standard error: how much uncertainty there is around those
predicted means. The “LCL” and “UCL” columns give us the lower and upper bounds of
the 95% confidence interval, so we can say, with 95% confidence, that the true mean likely
falls within those ranges.

Below that, the contrasts section shows the pairwise comparison between the two
conditions. Since we only have two levels of modality, there’s just one comparison here:
Audio-only minus Audiovisual. This reads as any other regular post hoc test. The estimate
is –83.1 ms, meaning that on average, participants were about 83 milliseconds slower in
the Audiovisual condition compared to Audio-only, and this difference is significant.

Finally, the note “Degrees-of-freedom method: asymptotic” means that because this is a
large-sample model, emmeans() used an approximation that assumes very large sample
sizes (so the df are shown as infinite).

Warning message from emmeans()

When you run a post hoc test on a model with a large number of observations, R may
display a message saying that degrees-of-freedom (df) calculations were disabled. This
happens because emmeans() tries to make the computation faster by skipping the more
intensive df estimation step. The note that appears in the console provides code you can
run to re-enable df calculations.

emm_options(pbkrtest.limit = 21679) # Note that this number is the same total
number of observations that we fitted in the model
emmeans(model_final, pairwise ~ modality)

What if you are interested in the intercepts and slopes for each participants?

You can use the coef() function to call the intercepts and slopes for the random effects.

coef(model_final)$PID

 (Intercept) modalityAudiovisual
301 1024.1508 -17.804624
302 1044.1518 1.646581
303 882.7179 58.600934

304 1232.7152 -28.347453
306 1042.5604 33.065551
307 1111.1585 -8.904496
308 1250.7637 70.799658
309 795.2199 16.048020
310 1176.3880 103.327041
311 1012.7313 30.866697
312 1110.0308 152.561457
313 1114.0877 30.663927
314 1168.9613 -72.568020
315 878.1152 16.197487
316 1419.3258 -37.755159
318 945.2803 59.192655
319 1017.4521 97.948894
320 987.6555 100.896551
321 1025.2493 139.192088
324 1031.4518 135.909603
325 826.5912 35.087764
326 1048.7792 39.572677
328 1236.9583 127.678456
329 1042.3875 10.489185
331 1406.7592 161.486154
333 1644.4547 56.076241
334 943.7839 93.427240
335 1171.6509 64.112938
337 872.3499 170.141490
338 806.7678 121.487877
340 1179.8094 105.320062
341 867.4942 124.643265
342 1253.4290 30.831929
343 988.1140 207.056296
344 1027.4896 97.382327
346 895.9018 35.600855
348 755.4009 188.735334
349 940.4686 55.463174
350 1073.3327 302.187066
351 1121.0501 214.673204
352 796.5104 77.665725
353 1103.9468 154.761873
354 1074.5031 155.530774
355 1192.7633 90.092243
356 907.3338 397.549801
357 910.8000 80.974221
358 963.0819 33.105227
359 1087.5979 -39.919351
360 1070.3001 27.246665
361 982.0369 131.986524
362 953.4162 55.859512
363 920.6955 44.129923
364 1003.7514 74.889809

What we’re looking at here are the participant-specific coefficients, the model’s
estimated intercept and slope for each participant.

The first column, (Intercept), gives the model’s estimate of each participant’s average
reaction time in the reference condition: here, that’s the Audio-only condition. So, for
example, participant 301 has an estimated baseline RT of about 1024 ms, while
participant 309 is much faster, around 795 ms, and participant 304 is slower, around 1233
ms.

The second column, modalityAudiovisual, shows how much that participant’s reaction
time changes in the Audiovisual condition relative to their own Audio-only baseline.

For instance:

• Participant 303 has a positive slope (+58.6), meaning they got slower when both
hearing and seeing the speaker.

• Participant 304 has a negative slope (–28.3), meaning they got faster in the
Audiovisual condition.

• Participant 302 is near zero (+1.6), showing almost no effect of modality at all.

Some visualizations

Random effect for Participants: Individual trajectories in reaction times by
modality
Get model predictions for each participant and modality
library(dplyr)

Attaching package: 'dplyr'

The following objects are masked from 'package:stats':

 filter, lag

The following objects are masked from 'package:base':

 intersect, setdiff, setequal, union

library(ggplot2)

Warning: package 'ggplot2' was built under R version 4.3.3

pred_data <- data %>%
 group_by(PID, modality) %>%
 summarise(
 mean_RT = mean(RT, na.rm = TRUE),

 .groups = "drop"
)

ggplot(pred_data, aes(x = modality, y = mean_RT, group = PID)) +
 geom_line(alpha = 0.3, color = "gray50") +
 stat_summary(fun = mean, geom = "line", aes(group = 1), color = "#0072B2",
size = 1.3) +
 stat_summary(fun.data = mean_cl_boot, geom = "errorbar", width = 0.1, color
= "#0072B2") +
 stat_summary(fun = mean, geom = "point", color = "#0072B2", size = 3) +
 labs(
 title = "Individual Differences in Reaction Times by Modality",
 x = "Modality",
 y = "Mean Reaction Time (ms)"
) +
 theme_minimal(base_size = 14)

Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
ℹ Please use `linewidth` instead.

Each gray line represents one participant’s average reaction times in the two conditions:
Audio-only and Audiovisual. Most lines slope upward, meaning that participants were

generally slower in the Audiovisual condition, but the slope is not identical for everyone.
Some people barely change across conditions, while others slow down quite a bit.

The thick blue line shows the overall trend (the model’s fixed effect) which represents the
average effect across everyone. We plot this to visualize individual variability:even
though there’s a clear average effect, real participants don’t all behave the same way. This
is exactly what the random effects in the model capture: that some participants are faster
or slower overall (random intercepts) and that the size of the modality effect varies across
people (random slopes).

Random effect for Participants: Observed vs. Predicted Reaction Times
data$predicted <- predict(model_final)
data$residuals <- resid(model_final)

ggplot(data, aes(x = predicted, y = RT)) +
 geom_point(alpha = 0.4, color = "#009E73") +
 geom_abline(intercept = 0, slope = 1, linetype = "dashed", color =
"gray40") +
 labs(
 title = "Observed vs. Predicted Reaction Times",
 x = "Predicted RT (ms)",
 y = "Observed RT (ms)"
) +
 theme_minimal(base_size = 14)

This last plot is a model diagnostic plot, showing how well our model’s predictions match
the actual data. Each point represents one trial with the predicted reaction time on the x-
axis and the observed reaction time on the y-axis.

If the model fit perfectly, all points would fall exactly on the diagonal dashed line, where
predicted equals observed. In practice, we expect some scatter around the line because
no model is perfect, but the general alignment tells us whether the model captures the
main structure of the data.

Here, the points follow the diagonal reasonably well, showing that our mixed model fits the
data fairly closely. This is a good visual check to ensure the model is doing a reasonable
job at capturing both the central trend and the variability in reaction times.

Random intercepts for Stimuli
library(lme4)
library(dplyr)
library(ggplot2)

Extract random effects for stimuli
stim_re <- ranef(model_final)$stim
stim_re <- tibble(stim = rownames(stim_re),
 intercept = stim_re[["(Intercept)"]])

Sort by intercept
stim_re <- stim_re %>%
 arrange(intercept) %>%
 mutate(stim = factor(stim, levels = stim))

Plot random intercepts
ggplot(stim_re, aes(x = stim, y = intercept)) +
 geom_point(color = "#E69F00") +
 geom_hline(yintercept = 0, linetype = "dashed", color = "gray50") +
 labs(
 title = "Random Intercepts for Stimuli",
 x = "Stimulus",
 y = "Deviation from Average RT (ms)"
) +
 theme_minimal(base_size = 14) +
 theme(axis.text.x = element_blank())

This plot shows how the model has estimated the random intercept for each word.

• Stimuli above the dashed line have positive intercepts, meaning they tend to
produce slower-than-average reaction times.

• Stimuli below the line have negative intercepts, meaning participants respond to
them faster than average.

The spread of these values (about –25 to +25 ms) tells us the range of item-level
variability captured by the model.

By allowing these small deviations per stimulus, the model doesn’t overestimate the effect
of modality, it acknowledges that part of the variability comes from the stimuli themselves,
not just from the experimental manipulation.

	Linear mixed-effects workshop - HEST Quantitative Methods Workshop Series
	Install and load libraries
	Load data into R
	Fitting a simple linear regression
	Fitting a random-intercepts model
	Fitting a random intercepts and random slope model
	Likelihood Ratio Tests (LRTs)
	What if we have several fixed effects to compare?
	What if we want to tests the random effects?

	Final model
	Interpretation of summary() output

	Post hoc tests
	Warning message from emmeans()
	What if you are interested in the intercepts and slopes for each participants?

	Some visualizations
	Random effect for Participants: Individual trajectories in reaction times by modality
	Random effect for Participants: Observed vs. Predicted Reaction Times
	Random intercepts for Stimuli

