
LMM Workshop 
Giovanna Del Sordo 

Linear mixed-effects workshop - HEST Quantitative 
Methods Workshop Series 
The data used in this example come from Brown (2021): An Introduction to Linear Mixed 
Effects Modeling in R. doi: https://doi.org/10.1177/2515245920960351 

Install and load libraries 

Base R (the set of tools that is built into R) has a host of functions, but to create mixed-
effects models you will need to install a specific package called lme4 (Bates et al., 2020). 

Packages, also referred to as libraries, are sets of functions that work together and are not 
already built into Base R. To install lme4, run the following line of code (you should run this 
line of code only if you have not already installed the package): 

#install.packages("lme4") 

Once the package is installed, it is always on your computer, and you will not need to run 
that line of code again. Whenever you want to create mixed-effects models, you will need 
to load the installed package, which will give you access to all the functions you need (you 
need to rerun this line of code every time you start a new R session). The following line of 
code will load the lme4 package: 

library(lme4) 

Load data into R 

You can simply replace the path to your own path where your data file is located. To read 
csv files, another package, “readr”, is necessary 

#install.packages("readr") 
library(readr) 
 
file_path_csv <- "/Users/giovannadelsordo/Documents/Documents - Giovanna’s 
MacBook Air/Post Doc NMSU/Workshops:Talks/HEST workshop series 2025/Code and 
data/rt_dummy_data.csv" 
data <- read_csv(file_path_csv) 
 
# Convert categorical variables from characters to factors 
data$PID <- as.factor(data$PID) 
data$modality <- as.factor(data$modality) 
data$stim <- as.factor(data$stim) 



Running these two lines create two elements in the R “Environment” on the right. One is 
simply the path to the csv file, and the other is a dataframe containing the data. The data 
file contains: 

- PID: participants’ numbers (random effect). 

- RT: reaction time in milliseconds (dependent variable). 

- modality: condition with two levels: “Audio-only” and “Audiovisual” (fixed factor). 

- stim: the words presented to participants in the primary task (random effect). 

Fitting a simple linear regression 
model_regression <- lm(RT ~ 1 + modality, data = data) 
summary(model_regression) 

 
Call: 
lm(formula = RT ~ 1 + modality, data = data) 
 
Residuals: 
    Min      1Q  Median      3Q     Max  
-814.52 -210.46  -25.52  174.54 1436.54  
 
Coefficients: 
                    Estimate Std. Error t value Pr(>|t|)     
(Intercept)         1041.464      3.001  347.00   <2e-16 *** 
modalityAudiovisual   83.057      4.207   19.74   <2e-16 *** 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
Residual standard error: 309.7 on 21677 degrees of freedom 
Multiple R-squared:  0.01766,   Adjusted R-squared:  0.01761  
F-statistic: 389.7 on 1 and 21677 DF,  p-value: < 2.2e-16 

Fitting a random-intercepts model 
lmer(outcome ~ 1 + predictor + (1|participant) + (1|item), data = data) 

lmer() – This is the function that builds a linear mixed-effects model. It comes from the 
lme4 package. 

outcome – The dependent variable (the thing you’re trying to predict). 

predictor – The independent variable (the factor you think affects the outcome). 

1 + predictor – This part describes the fixed effects. The 1 represents the intercept (the 
average starting point). 



(1 | participant) and (1 | item) – These are the random effects. The pipe symbol (|) means 
“varies by.” So (1 | participant) means “each participant has their own intercept.” (1 | item) 
means “each item has its own intercept.” 

Together, they tell the model that both participants and items can differ in their baseline 
responses. 

This model has random intercepts for participants and items, but no random slopes. That 
means the model assumes that while people and words may start from different baselines, 
the overall effect of the predictor (the slope) is the same for everyone. 

Also, note: 

The 1 in the fixed-effects part (1 + predictor) is optional — R includes an intercept by 
default. But the 1 in the random-effects part ((1 | participant)) is not optional, because you 
have to tell R what can vary across the grouping factor. 

The actual model is: 

model_intercept <- lmer(RT ~ 1 + modality + (1|PID) + (1|stim), data = data) 
summary(model_intercept) 

Linear mixed model fit by REML ['lmerMod'] 
Formula: RT ~ 1 + modality + (1 | PID) + (1 | stim) 
   Data: data 
 
REML criterion at convergence: 302861.5 
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-3.3572 -0.6949 -0.0205  0.5814  4.9120  
 
Random effects: 
 Groups   Name        Variance Std.Dev. 
 stim     (Intercept)   360.2   18.98   
 PID      (Intercept) 28065.7  167.53   
 Residual             67215.3  259.26   
Number of obs: 21679, groups:  stim, 543; PID, 53 
 
Fixed effects: 
                    Estimate Std. Error t value 
(Intercept)         1044.449     23.164   45.09 
modalityAudiovisual   82.525      3.529   23.38 
 
Correlation of Fixed Effects: 
            (Intr) 
modltyAdvsl -0.078 



This model only contains random intercepts, but no random slopes. However, based on 
topic knowledge, you might already expect that both participants and words might differ in 
the extent to which they are affected by the modality manipulation. We will therefore fit a 
model that includes both by-participant and by-item random slopes for modality. Failing to 
include random slopes would amount to assuming that all participants and words respond 
to the modality effect in exactly the same way, which is an unreasonable assumption to 
make. 

Fitting a random intercepts and random slope model 
lmer(outcome ~ 1 + predictor + (1 + predictor|participant) + (1 + 
predictor|item), data = data) 

Here, the portions in parentheses indicate that both the intercept (indicated by the 1, 
which in this case is optional because it is implied by the presence of random slopes but is 
included for clarity) and the predictor (indicated by + predictor) vary by participants and 
items. In plain language, this syntax means “predict the outcome from the predictor and 
the random intercepts and slopes for participants and items, using the data I provide.” 

The model above includes only one predictor, but if a model includes multiple predictors 
the researcher may decide which of the predictors can vary by participant or item; in other 
words, any fixed effect to the left of the interior parentheses can be included to the left of 
the pipe (inside the interior parentheses), provided that including it is justified given the 
design of the experiment. For example, if we wanted to include a second predictor that 
varied within both participants and items, but there was no theoretical motivation for 
including by-item random slopes for the second predictor—or, alternatively, if the second 
predictor varied between items, so including the by-item random slope would not be 
justified given the experimental design—the syntax would look like this: 

lmer(outcome ~ 1 + predictor1 + predictor2 + (1 + predictor1 + 
predictor2|participant) + (1 + predictor1|item), data = data) 

The actual model is: 

model_full <- lmer(RT ~ 1 + modality + (1 + modality|PID) + (1 + 
modality|stim), data = data) 

This is the “full” model (i.e., the model including the fixed effects of interest and all 
theoretically motivated random effects). 

But! Is this model the best fit to the data? 

Likelihood Ratio Tests (LRTs) 

The “likelihood” is a measure of how well the model’s parameters explain the data we 
actually observed. 
A higher likelihood means the model fits the data better. 

The Likelihood Ratio Test compares two models: 



• A reduced model (simpler) 

• A full model (more complex) 

It asks: does the full model fit the data significantly better? 

# Full model = model with all fixed effects, random intercepts and random 
slopes of interest 
model_full <- lmer(RT ~ 1 + modality + (1 + modality|PID) + (1 + 
modality|stim), 
                   data = data, REML = FALSE) 

Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, 
: 
Model failed to converge with max|grad| = 0.00251373 (tol = 0.002, component 
1) 

# Does this full model fit the data better than models with less parameters?  
 
# reduced model without modality (fixed effect) 
model_reduced_modality <- lmer(RT ~ 1 + (1 + modality|PID) + (1 + 
modality|stim), 
                      data = data, REML = FALSE) 
# Does the effect of modality is significant? Does it help to explain the 
observed data? 
# Warning message: The model "failed to converge". We will come back to 
that...  
 
# We use the function "anova()" to test which model is better. It is a Chi-
square test 
anova(model_full, model_reduced_modality) 

Data: data 
Models: 
model_reduced_modality: RT ~ 1 + (1 + modality | PID) + (1 + modality | stim)  
model_full: RT ~ 1 + modality + (1 + modality | PID) + (1 + modality | stim)  
                       npar    AIC    BIC  logLik -2*log(L)  Chisq Df 
model_reduced_modality    8 302449 302513 -151217    302433           
model_full                9 302419 302491 -151200    302401 32.385  1 
                       Pr(>Chisq)     
model_reduced_modality                
model_full              1.264e-08 *** 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  

• Reduced model → includes only the intercept and random effects (no fixed effect for 
modality). 

• Full model → same as above, but adds the fixed effect of modality. 



They are nested models: one is a simpler version of the other. 

Does a model that includes information about the modality in which words are presented 
fit the data better than a model that does not include that information? 

Interpretation: All the values for AIC, BIC, logLik, and -2*log(L) have smaller values in the 
full model. The p-value is significant. –> The full model fit the data best. The model 
including the modality effect provides a better fit. 

What if we have several fixed effects to compare? 
#install.packages("afex") 
library(afex) 

************ 
Welcome to afex. For support visit: http://afex.singmann.science/  

- Functions for ANOVAs: aov_car(), aov_ez(), and aov_4() 
- Methods for calculating p-values with mixed(): 'S', 'KR', 'LRT', and 'PB' 
- 'afex_aov' and 'mixed' objects can be passed to emmeans() for follow-up 
tests 
- Get and set global package options with: afex_options() 
- Set sum-to-zero contrasts globally: set_sum_contrasts() 
- For example analyses see: browseVignettes("afex") 
************ 

 
Attaching package: 'afex' 

The following object is masked from 'package:lme4': 
 
    lmer 

mixed(RT ~ 1 + modality + (1 + modality|PID) + (1 + modality|stim), data = 
data, method = 'LRT') 

Contrasts set to contr.sum for the following variables: modality, PID, stim  

REML argument to lmer() set to FALSE for method = 'PB' or 'LRT'  

Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, 
: 
unable to evaluate scaled gradient 

Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, 
: 
Model failed to converge: degenerate Hessian with 1 negative eigenvalues  

Warning: Model failed to converge with 1 negative eigenvalue: -9.6e+02 



Warning: lme4 reported (at least) the following warnings for 'modality':  
  * unable to evaluate scaled gradient 
  * Model failed to converge: degenerate  Hessian with 1 negative eigenvalues  

Mixed Model Anova Table (Type 3 tests, LRT-method) 
 
Model: RT ~ 1 + modality + (1 + modality | PID) + (1 + modality | stim)  
Data: data 
Df full model: 9 
    Effect df     Chisq p.value 
1 modality  1 32.54 ***   <.001 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1  

For this specific model, we get the same results as the “anova()” function. The “mixed()” 
function becomes more interesting when several fixed effects are tested. 

Warning: the mixed() function only works for FIXED EFFECTS, not for random effects. 

What if we want to tests the random effects? 

You will need to go back to the anova() function. 

# Full model (both intercepts and slopes for PID and stim) 
model_full <- lmer(RT ~ 1 + modality + 
                     (1 + modality | PID) + 
                     (1 + modality | stim), 
                   data = data, REML = FALSE) 

Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, 
: 
Model failed to converge with max|grad| = 0.00251373 (tol = 0.002, component 
1) 

# Remove the random slope for stim 
model_no_slope_stim <- lmer(RT ~ 1 + modality + 
                              (1 + modality | PID) + 
                              (1 | stim), 
                            data = data, REML = FALSE) 
 
anova(model_full, model_no_slope_stim) 

Data: data 
Models: 
model_no_slope_stim: RT ~ 1 + modality + (1 + modality | PID) + (1 | stim)  
model_full: RT ~ 1 + modality + (1 + modality | PID) + (1 + modality | stim)  
                    npar    AIC    BIC  logLik -2*log(L)  Chisq Df Pr(>Chisq) 
model_no_slope_stim    7 302416 302472 -151201    302402                      
model_full             9 302419 302491 -151200    302401 1.1261  2     0.5695 

Adding a random slope for stimulus does NOT significantly improve model fit. 



# Remove the random slope for stim 
model_no_slope_stim <- lmer(RT ~ 1 + modality + 
                              (1 + modality | PID) + 
                              (1 | stim), 
                            data = data, REML = FALSE) 
 
# Remove both random slopes (intercepts only for both) 
model_intercepts_only <- lmer(RT ~ 1 + modality + 
                                (1 | PID) + 
                                (1 | stim), 
                              data = data, REML = FALSE) 
 
anova(model_no_slope_stim, model_intercepts_only) 

Data: data 
Models: 
model_intercepts_only: RT ~ 1 + modality + (1 | PID) + (1 | stim)  
model_no_slope_stim: RT ~ 1 + modality + (1 + modality | PID) + (1 | stim)  
                      npar    AIC    BIC  logLik -2*log(L)  Chisq Df 
Pr(>Chisq) 
model_intercepts_only    5 302884 302924 -151437    302874                      
model_no_slope_stim      7 302416 302472 -151201    302402 472.19  2  < 2.2e-
16 
                          
model_intercepts_only     
model_no_slope_stim   *** 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  

The model with random slopes for participants (model_no_slope_stim) fits the data 
much better than the model with only random intercepts (model_intercepts_only). 

In plain terms: Participants differ not only in their overall speed (intercept), but also in how 
strongly the effect of modality influences their RTs. 

Final model 
model_final <- lmer(RT ~ 1 + modality + 
                              (1 + modality | PID) + 
                              (1 | stim), 
                            data = data, REML = FALSE) 

Participants (PID): 

• Random intercepts: each participant has their own baseline reaction time (RT). 

• Random slopes for modality: each participant has their own modality effect (the 
slope can vary). 

Stimuli (stim): 



• Random intercepts only: each stimulus has its own baseline RT. 

• No random slope for modality: the effect of modality is assumed to be the same 
across all stimuli. 

Why this structure? 

It’s theoretically justified: participants are expected to differ in both overall speed and how 
they respond to modality, but the modality effect itself should be consistent across 
stimuli. 

Interpretation of summary() output 

The likelihood ratio test comparing our full and reduced models indicated that the modality 
effect was significant, but it did not tell us about the direction or magnitude of the effect. 
So how do we assess whether the audiovisual condition resulted in slower or faster 
response times? And how do we gain insight into the variability across participants and 
items that we asked the model to estimate? To answer these questions, we need to 
examine the model output via the summary() function. 

Note: p-values will only be shown if you have loaded the “afex” package. 

summary(model_final) 

Linear mixed model fit by maximum likelihood . t-tests use Satterthwaite's 
  method [lmerModLmerTest] 
Formula: RT ~ 1 + modality + (1 + modality | PID) + (1 | stim)  
   Data: data 
 
      AIC       BIC    logLik -2*log(L)  df.resid  
 302415.8  302471.7 -151200.9  302401.8     21672  
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-3.3599 -0.6959 -0.0136  0.5897  4.9906  
 
Random effects: 
 Groups   Name                Variance Std.Dev. Corr  
 stim     (Intercept)           399.6   19.99         
 PID      (Intercept)         28006.4  167.35         
          modalityAudiovisual  7566.1   86.98   -0.16 
 Residual                     65313.6  255.57         
Number of obs: 21679, groups:  stim, 543; PID, 53 
 
Fixed effects: 
                    Estimate Std. Error      df t value Pr(>|t|)     
(Intercept)          1044.15      23.14   53.19  45.126  < 2e-16 *** 
modalityAudiovisual    83.15      12.45   52.86   6.678  1.5e-08 *** 
--- 



Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
Correlation of Fixed Effects: 
            (Intr) 
modltyAdvsl -0.179 

Post hoc tests 

When your model includes multiple fixed effects, interactions, or a factor with more 
than two levels, you’ll often need to conduct post hoc tests to explore specific 
comparisons. 
 

For linear mixed-effects models, these tests are typically performed using the emmeans 
package 

#install.packages("emmeans") 
library(emmeans) 

To run post hoc tests, you should use the emmeans() function, feed it your model, and the 
specific fixed factor you want to perform the post hoc tests on. 

emmeans(model_final, pairwise ~ modality) 

Note: D.f. calculations have been disabled because the number of observations 
exceeds 3000. 
To enable adjustments, add the argument 'pbkrtest.limit = 21679' (or larger)  
[or, globally, 'set emm_options(pbkrtest.limit = 21679)' or larger];  
but be warned that this may result in large computation time and memory use.  

Note: D.f. calculations have been disabled because the number of observations 
exceeds 3000. 
To enable adjustments, add the argument 'lmerTest.limit = 21679' (or larger)  
[or, globally, 'set emm_options(lmerTest.limit = 21679)' or larger];  
but be warned that this may result in large computation time and memory use.  

$emmeans 
 modality    emmean   SE  df asymp.LCL asymp.UCL 
 Audio-only    1044 23.1 Inf       999      1089 
 Audiovisual   1127 24.2 Inf      1080      1175 
 
Degrees-of-freedom method: asymptotic  
Confidence level used: 0.95  
 
$contrasts 
 contrast                   estimate   SE  df z.ratio p.value 
 (Audio-only) - Audiovisual    -83.1 12.5 Inf  -6.678  <.0001 
 
Degrees-of-freedom method: asymptotic  



The first table show what are called estimated marginal means or model-adjusted means. 
These are simply the average predicted values of reaction time for each condition — here, 
the Audio-only and Audiovisual modalities — as estimated by our model. They’re called 
model-adjusted because they take into account all the other parts of the model, like the 
random effects, rather than being simple raw averages. 

So, in our results: 

• The predicted mean reaction time for Audio-only trials is about 1044 ms, 

• And for Audiovisual trials, it’s about 1127 ms. 

The “SE” column shows the standard error: how much uncertainty there is around those 
predicted means. The “LCL” and “UCL” columns give us the lower and upper bounds of 
the 95% confidence interval, so we can say, with 95% confidence, that the true mean likely 
falls within those ranges. 

Below that, the contrasts section shows the pairwise comparison between the two 
conditions. Since we only have two levels of modality, there’s just one comparison here: 
Audio-only minus Audiovisual. This reads as any other regular post hoc test. The estimate 
is –83.1 ms, meaning that on average, participants were about 83 milliseconds slower in 
the Audiovisual condition compared to Audio-only, and this difference is significant. 

Finally, the note “Degrees-of-freedom method: asymptotic” means that because this is a 
large-sample model, emmeans() used an approximation that assumes very large sample 
sizes (so the df are shown as infinite). 

Warning message from emmeans() 

When you run a post hoc test on a model with a large number of observations, R may 
display a message saying that degrees-of-freedom (df) calculations were disabled. This 
happens because emmeans() tries to make the computation faster by skipping the more 
intensive df estimation step. The note that appears in the console provides code you can 
run to re-enable df calculations. 

emm_options(pbkrtest.limit = 21679) # Note that this number is the same total 
number of observations that we fitted in the model 
emmeans(model_final, pairwise ~ modality) 

What if you are interested in the intercepts and slopes for each participants? 

You can use the coef() function to call the intercepts and slopes for the random effects. 

coef(model_final)$PID 

    (Intercept) modalityAudiovisual 
301   1024.1508          -17.804624 
302   1044.1518            1.646581 
303    882.7179           58.600934 



304   1232.7152          -28.347453 
306   1042.5604           33.065551 
307   1111.1585           -8.904496 
308   1250.7637           70.799658 
309    795.2199           16.048020 
310   1176.3880          103.327041 
311   1012.7313           30.866697 
312   1110.0308          152.561457 
313   1114.0877           30.663927 
314   1168.9613          -72.568020 
315    878.1152           16.197487 
316   1419.3258          -37.755159 
318    945.2803           59.192655 
319   1017.4521           97.948894 
320    987.6555          100.896551 
321   1025.2493          139.192088 
324   1031.4518          135.909603 
325    826.5912           35.087764 
326   1048.7792           39.572677 
328   1236.9583          127.678456 
329   1042.3875           10.489185 
331   1406.7592          161.486154 
333   1644.4547           56.076241 
334    943.7839           93.427240 
335   1171.6509           64.112938 
337    872.3499          170.141490 
338    806.7678          121.487877 
340   1179.8094          105.320062 
341    867.4942          124.643265 
342   1253.4290           30.831929 
343    988.1140          207.056296 
344   1027.4896           97.382327 
346    895.9018           35.600855 
348    755.4009          188.735334 
349    940.4686           55.463174 
350   1073.3327          302.187066 
351   1121.0501          214.673204 
352    796.5104           77.665725 
353   1103.9468          154.761873 
354   1074.5031          155.530774 
355   1192.7633           90.092243 
356    907.3338          397.549801 
357    910.8000           80.974221 
358    963.0819           33.105227 
359   1087.5979          -39.919351 
360   1070.3001           27.246665 
361    982.0369          131.986524 
362    953.4162           55.859512 
363    920.6955           44.129923 
364   1003.7514           74.889809 



What we’re looking at here are the participant-specific coefficients, the model’s 
estimated intercept and slope for each participant. 

The first column, (Intercept), gives the model’s estimate of each participant’s average 
reaction time in the reference condition: here, that’s the Audio-only condition. So, for 
example, participant 301 has an estimated baseline RT of about 1024 ms, while 
participant 309 is much faster, around 795 ms, and participant 304 is slower, around 1233 
ms. 

The second column, modalityAudiovisual, shows how much that participant’s reaction 
time changes in the Audiovisual condition relative to their own Audio-only baseline. 
 

For instance: 

• Participant 303 has a positive slope (+58.6), meaning they got slower when both 
hearing and seeing the speaker. 

• Participant 304 has a negative slope (–28.3), meaning they got faster in the 
Audiovisual condition. 

• Participant 302 is near zero (+1.6), showing almost no effect of modality at all. 

Some visualizations 

Random effect for Participants: Individual trajectories in reaction times by 
modality 
# Get model predictions for each participant and modality 
library(dplyr) 

 
Attaching package: 'dplyr' 

The following objects are masked from 'package:stats': 
 
    filter, lag 

The following objects are masked from 'package:base': 
 
    intersect, setdiff, setequal, union 

library(ggplot2) 

Warning: package 'ggplot2' was built under R version 4.3.3 

pred_data <- data %>% 
  group_by(PID, modality) %>% 
  summarise( 
    mean_RT = mean(RT, na.rm = TRUE), 



    .groups = "drop" 
  ) 
 
ggplot(pred_data, aes(x = modality, y = mean_RT, group = PID)) + 
  geom_line(alpha = 0.3, color = "gray50") + 
  stat_summary(fun = mean, geom = "line", aes(group = 1), color = "#0072B2", 
size = 1.3) + 
  stat_summary(fun.data = mean_cl_boot, geom = "errorbar", width = 0.1, color 
= "#0072B2") + 
  stat_summary(fun = mean, geom = "point", color = "#0072B2", size = 3) + 
  labs( 
    title = "Individual Differences in Reaction Times by Modality", 
    x = "Modality", 
    y = "Mean Reaction Time (ms)" 
  ) + 
  theme_minimal(base_size = 14) 

Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.  
ℹ Please use `linewidth` instead. 

 

Each gray line represents one participant’s average reaction times in the two conditions: 
Audio-only and Audiovisual. Most lines slope upward, meaning that participants were 



generally slower in the Audiovisual condition, but the slope is not identical for everyone. 
Some people barely change across conditions, while others slow down quite a bit. 

The thick blue line shows the overall trend (the model’s fixed effect) which represents the 
average effect across everyone. We plot this to visualize individual variability:even 
though there’s a clear average effect, real participants don’t all behave the same way. This 
is exactly what the random effects in the model capture: that some participants are faster 
or slower overall (random intercepts) and that the size of the modality effect varies across 
people (random slopes). 

Random effect for Participants: Observed vs. Predicted Reaction Times 
data$predicted <- predict(model_final) 
data$residuals <- resid(model_final) 
 
ggplot(data, aes(x = predicted, y = RT)) + 
  geom_point(alpha = 0.4, color = "#009E73") + 
  geom_abline(intercept = 0, slope = 1, linetype = "dashed", color = 
"gray40") + 
  labs( 
    title = "Observed vs. Predicted Reaction Times", 
    x = "Predicted RT (ms)", 
    y = "Observed RT (ms)" 
  ) + 
  theme_minimal(base_size = 14) 



 

This last plot is a model diagnostic plot, showing how well our model’s predictions match 
the actual data. Each point represents one trial with the predicted reaction time on the x-
axis and the observed reaction time on the y-axis. 

If the model fit perfectly, all points would fall exactly on the diagonal dashed line, where 
predicted equals observed. In practice, we expect some scatter around the line because 
no model is perfect, but the general alignment tells us whether the model captures the 
main structure of the data. 

Here, the points follow the diagonal reasonably well, showing that our mixed model fits the 
data fairly closely. This is a good visual check to ensure the model is doing a reasonable 
job at capturing both the central trend and the variability in reaction times. 

Random intercepts for Stimuli 
library(lme4) 
library(dplyr) 
library(ggplot2) 
 
# Extract random effects for stimuli 
stim_re <- ranef(model_final)$stim 
stim_re <- tibble(stim = rownames(stim_re), 
                  intercept = stim_re[["(Intercept)"]]) 



 
# Sort by intercept 
stim_re <- stim_re %>% 
  arrange(intercept) %>% 
  mutate(stim = factor(stim, levels = stim)) 
 
# Plot random intercepts 
ggplot(stim_re, aes(x = stim, y = intercept)) + 
  geom_point(color = "#E69F00") + 
  geom_hline(yintercept = 0, linetype = "dashed", color = "gray50") + 
  labs( 
    title = "Random Intercepts for Stimuli", 
    x = "Stimulus", 
    y = "Deviation from Average RT (ms)" 
  ) + 
  theme_minimal(base_size = 14) + 
  theme(axis.text.x = element_blank()) 

 

This plot shows how the model has estimated the random intercept for each word. 

• Stimuli above the dashed line have positive intercepts, meaning they tend to 
produce slower-than-average reaction times. 



• Stimuli below the line have negative intercepts, meaning participants respond to 
them faster than average. 

The spread of these values (about –25 to +25 ms) tells us the range of item-level 
variability captured by the model. 

By allowing these small deviations per stimulus, the model doesn’t overestimate the effect 
of modality, it acknowledges that part of the variability comes from the stimuli themselves, 
not just from the experimental manipulation. 
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