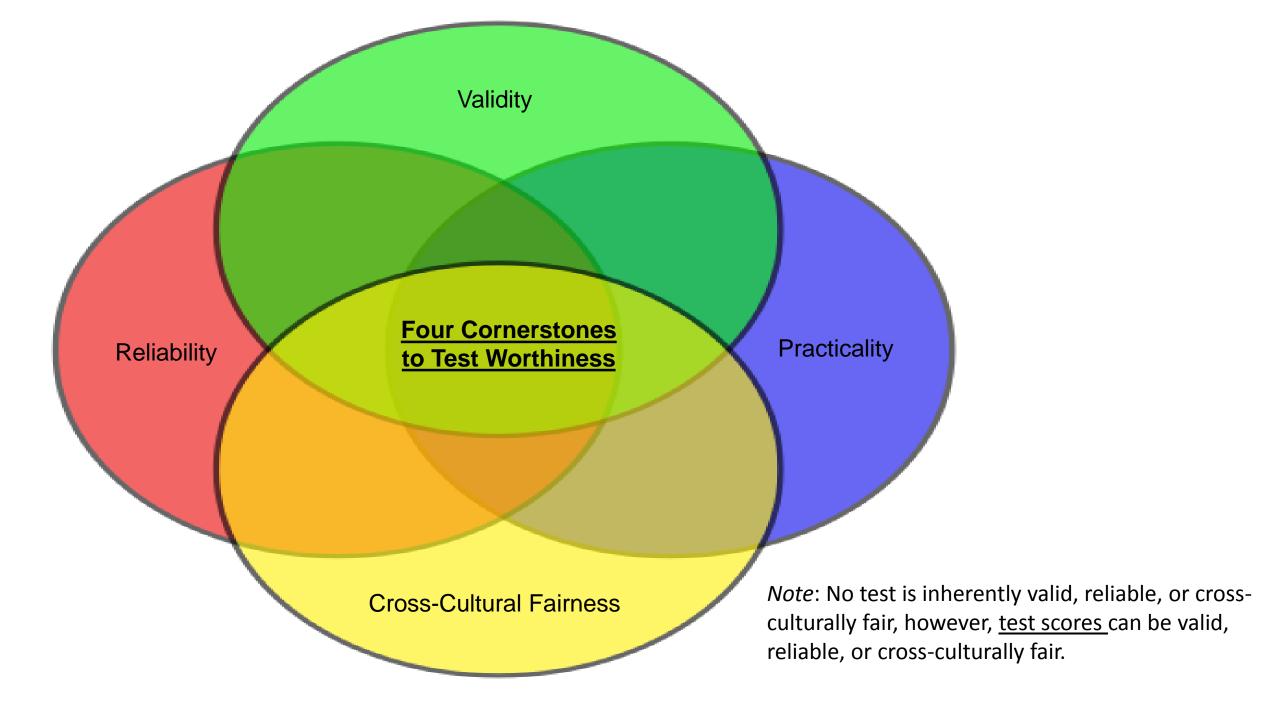
Factor Analytic Approaches to Demonstrating Internal Structure Validity of Test Scores: An Overview of the Major Approaches to Factor Analysis and When to use Them

Mike Kalkbrenner, Ph.D., NCC

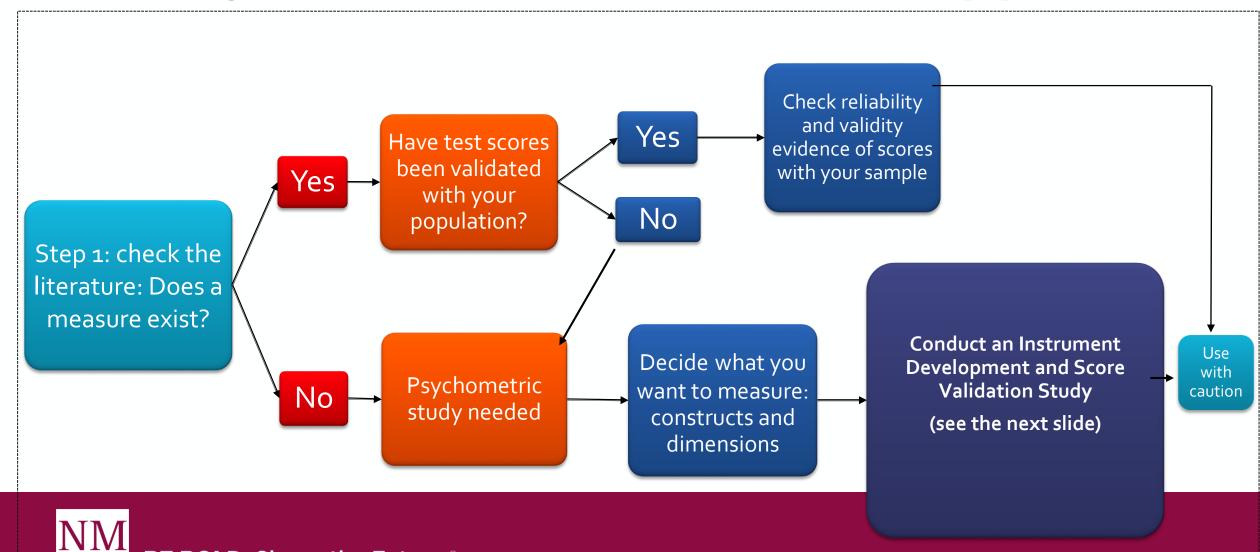
College of Health, Education, and Social Transformation


Department of Counseling and Educational Psychology

BE BOLD. Shape the Future. New Mexico State University

Agenda

- Welcome and introduction
- Use an existing measure or develop your own?
- Overview of the major approaches factor analysis
- Comments and questions!


Validity Evidence of Test Scores

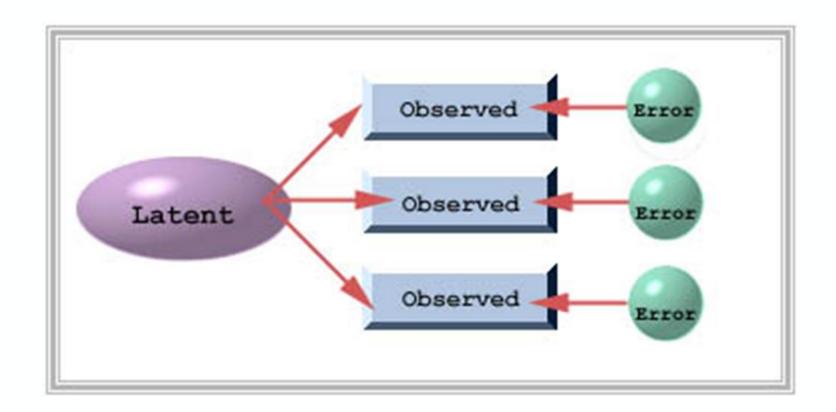
- A unitary concept; however, there are 5 general sources of validity evidence of test scores (American Educational Research Association [AERA], 2014):
 - 1. Content Validity
 - 2. Response Process Validity
 - 3. Internal Structure (Factor Analysis)
 - 4. Relations to Other Variables
 - Convergent and Discriminant Validity
 - Test Criterion Validity
 - Concurrent and Predictive Validity
 - 5. Consequential Validity

Today's presentation focuses on

To Develop or Not to Develop: Determining whether to use an existing measure from the literature or develop your own

The MEASURE Approach to Instrument Development

- Make the purpose and rationale clear
- Establish empirical framework
- Articulate theoretical blueprint
- Synthesizing content and scale development
- Use expert reviewers
- Recruit participants
- Evaluate validity and reliability


Kalkbrenner (2021): https://doi.org/10.7275/svg4-e671

What is Factor Analysis?

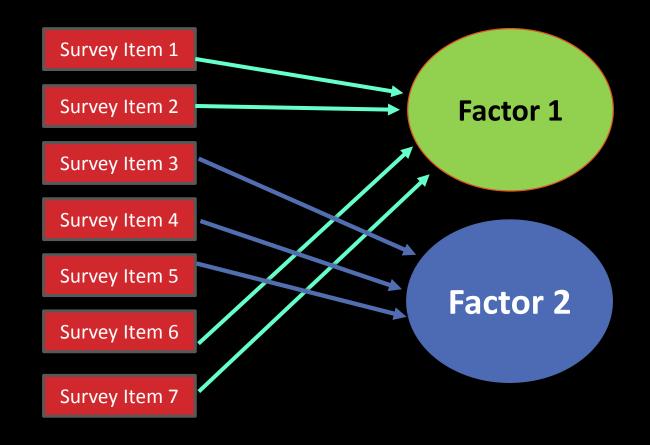
- A series of statistical analyses for estimating internal structure validity of test scores.
- Internal structure validity:
 - The extent to which the overall items on an instrument measure a coherent *latent* variable (i.e., theoretical or hypothetical trait).
 - For example:
 - Intelligence
 - Self-esteem
 - Empathy
 - Classroom climate

- Health literacy
- Resilience
- Student engagement
- And more!!!

Latent vs. Observed Variables

Major Approaches to Factor Analysis

- Exploratory Factor Analysis (EFA)
- Confirmatory Factor Analysis (CFA)
 - Extensions of Confirmatory Factor Analysis:
 - Higher-Order Confirmatory Factor Analysis
 - Bi-Factor Confirmatory Factor Analysis
 - Multiple-Group Confirmatory Factor Analysis


Primary Aim of Exploratory Factor Analysis (EFA)

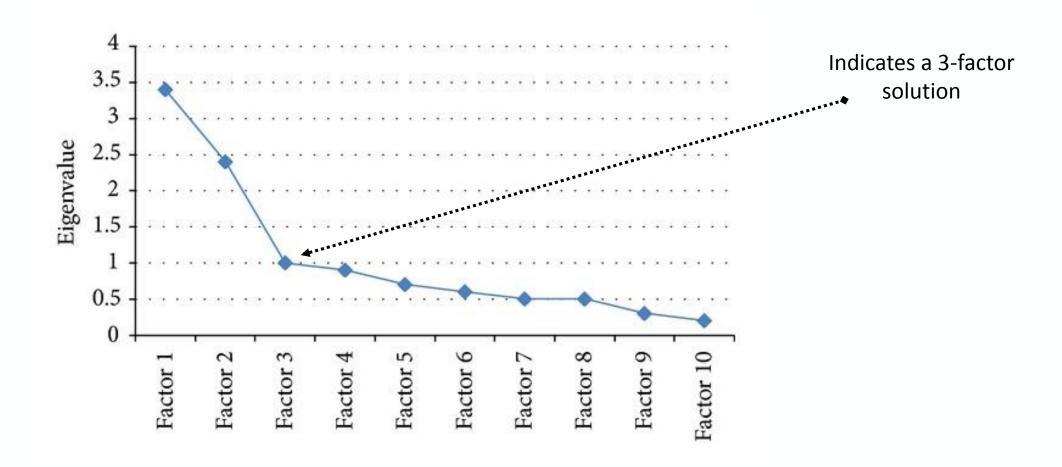
- To simplify an inter-item correlation matrix in a few underlying dimensions (or factors) that make sense both statistically and logically.
 - Looking for a range of inter-item correlations between approximately <u>.20</u> to <u>.80</u>
 (Why?)

Determining Sample Size for Factor Analysis

- Many guidelines for sample size:
 - 10 participants per parameter to be estimated (Kline, 2005; Byrne, 2019)
 - 20 participants per parameter (Tanaka, 1987)
 - 5 participants per parameter (Bentler & Chou, 1987)
- At least 200 participants regardless of the number of estimated parameters

EXPLORATORY FACTOR ANALYSIS

*In EFA the items lead to the emergence of the factors or subscales


Primary Factor Extraction Methods

- Principal Components Analysis (PCA)
 - A type of factor analysis or a method of data reduction?
- Principal Axis Factoring (PAF)
- Maximum Likelihood (ML)

Determining the Number of Factors to Extract

- Kaiser Criterion
 - Drop all factors with Eigenvalues under 1.0
- Meaningful Variance (more than 5%)
- Cattell's Scree Test
- Parallel Analysis

Example Scree Plot

Parallel Analysis

- Comparison between the sample data and a matrix of random numbers.
 - Eigenvalues are compared between the sample data and the random data.
 - Retain the number of factors that have larger Eigenvalues compared to the sample data.

Parallel Analysis

3 factors are retained

·	TABLE 4	
Analysis of Princ	Eigenvalues Derived by Parallel ipal Components for the Life Regard Inde	ex (N = 334)
Real Data	Random Permutations of Real Data	a
10.37 >	1.58	
2.04 >	1.49	
1.56 >	1.43	
1.23	1.37	
1.10	1.33	
0.90	1.28	
0.85	1.24	(Steger, 2007)

Factor Rotation

- 1) Orthogonal (most commonly varimax)
 - Rotate the data on vectors at 90-degree angles
- 2) Oblique Rotation
 - Rotate data at angles that are less than 90-degrees

Extracted Communalities

- Indicates % of variance in each observed variable (test item) that each factor explains
- Higher communality (or h^2), more the component or factor will explain of the variance of each item or variable.
- h^2 values should be $\geq .30$
- Re-compute the EFA after removing each item

Communalities

	Initial	Extraction
behav1 CONCENTRATES	.713	/.746
behav2 CURIOUS	.743	.788
behav3 PERSEVERES	.766	.811
behav4 EVEN-TEMPERED	.729	.747
behav5 PLACID	.609	.664
behav6 COMPLIANT	.687	.710
behav7 SELF-CONTROLLED	.730	.749
behav8 RELATES-WARMLY	.605	.660
behav9 SUSTAINED ATTENTION	.776	.803
behav10 COMMUNICATIVE	.657	.674
behav11 RELAXED	.786	.820
behav12 CALM	.737	.786
behav13 PURPOSEFUL ACTIVITY	.764	.798
behav14 COOPERATIVE	.626	.647
behav15 CONTENTED	.595	\.621/

Extraction Method: Principal Axis Factoring.

Factor Loadings

- Values that denote the strength of relationship between observed variables (i.e., items) and the latent factor.
- Tentative guidelines for interpreting factor loadings:
 - "Weak" if less than .39
 - "Moderate" between .40 .59
 - "Strong" if more than .60
 - Cross-loading if more than .35 on two or more factors
 - Generally, the minimum cutoff for marking a factor is \geq .40

Life Satisfaction Survey	ı	actor Lo	adings	
(Questions)	1	2	3	4
1. I Feel tired most of the time	.82		.12	
2. I have trouble falling asleep	.73		.25	
3. I have difficulty staying asleep	.68		.14	
4. I enjoy sleeping	.55		.39	.34
5. I feel excited before going to work	.14	.78	.12	
6. My work is meaningful	.26	.70		
7. My supervisor respect my opinions	.23	.66	.24	
8. My coworkers are also my friends		.52		
9. I like having fun	.28		.17	.32
10. I can afford to buy what I need			.61	
11. Money is not a source of stress for me			.59	
12. I can buy a leisure item when I want to			.48	
13. I like money	.29	.37	.41	
14. I feel connected with others around me				.60
15. The people closest to me care about me	.13			.58
16. I can rely on my friends to have my back		.24		.47
17. My friends feel like family	.21			.42

Let's Practice!

*We are looking for items that clearly load on one factor (\geq .40) and do not cross-load (\geq .35) on two or more factors.

Life Satisfaction Survey		Factor Lo	oadings	
(Questions)	1	2	3	4
1. I Feel tired most of the time	.82		.12	
2. I have trouble falling asleep	.73		.25	
3. I have difficulty staying asleep	.68		.14	
4. Lenjoy sleeping	.55		.39	.34
5. I feel excited before going to work	.14	.78	.12	
6. My work is meaningful	.26	.70		
7. My supervisor respect my opinions	.23	.66	.24	
8. My coworkers are also my friends		.52		
9. Hike having fun	.28		.17	.32
10. I can afford to buy what I need			.61	
11. Money is not a source of stress for me			.59	
12. I can buy a leisure item when I want to			.48	
13. I like money	.29	.37	.41	
14. I feel connected with others around me				.60
15. The people closest to me care about me	.13			.58
16. I can rely on my friends to have my back		.24		.47
17. My friends feel like family	.21			.42

*Important: Remove items one at a time and re-compute the EFA.

Item # 4 cross-loads on factors 1 & 3

✓ Item # 9 fails to load (<.40) on any factor</p>

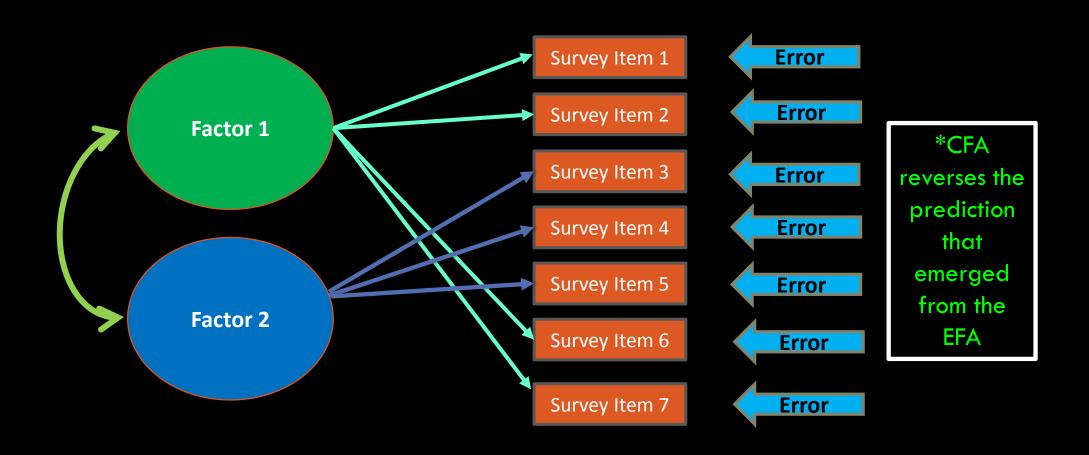
Item # 13 cross-loads on factors 2 & 3

Life Satisfaction Survey		actor Lo	actor Loadings			
(Questions)	1	2	3	4		
1. I Feel tired most of the time	.82		.12			
2. I have trouble falling asleep	.73		.25			
3. I have difficulty staying asleep	.68		.14			
5. I feel excited before going to work	.14	.78	.12			
6. My work is meaningful	.26	.70				
7. My supervisor respect my opinions	.23	.66	.24			
8. My coworkers are also my friends		.52				
10. I can afford to buy what I need			.61			
11. Money is not a source of stress for me			.59			
12. I can buy a leisure item when I want to			.48			
14. I feel connected with others around me				.60		
15. The people closest to me care about me	.13			.58		
16. I can rely on my friends to have my back		.24		.47		
17. My friends feel like family	.21			.42		

Note: Factor loadings over .40 appear in bold and mark the particular factor. Blank cells indicate factor loadings ≤ .10.

Life Satisfaction Survey		Factor Loadings			
(Questions)	1	2	3	4	
1. I Feel tired most of the time	.82		.12		
2. I have trouble falling asleep	.73		.25		
3. I have difficulty staying asleep	.68		.14		
5. I feel excited before going to work	.14	.78	.12		
6. My work is meaningful	.26	.70			
7. My supervisor respect my opinions	.23	.66	.24		
8. My coworkers are also my friends		.52			
10. I can afford to buy what I need			.61		
11. Money is not a source of stress for me			.59		
12. I can buy a leisure item when I want to			.48		
14. I feel connected with others around me				.60	
15. The people closest to me care about me	.13			.58	
16. I can rely on my friends to have my back		.24		.47	
17. My friends feel like family	.21			.42	

POSSIBLE FACTOR NAMES


Factor 1: Sleep Difficulty

Factor 2: Work Satisfaction

Factor 3: Financial Stability

Factor 4: Social Connectedness

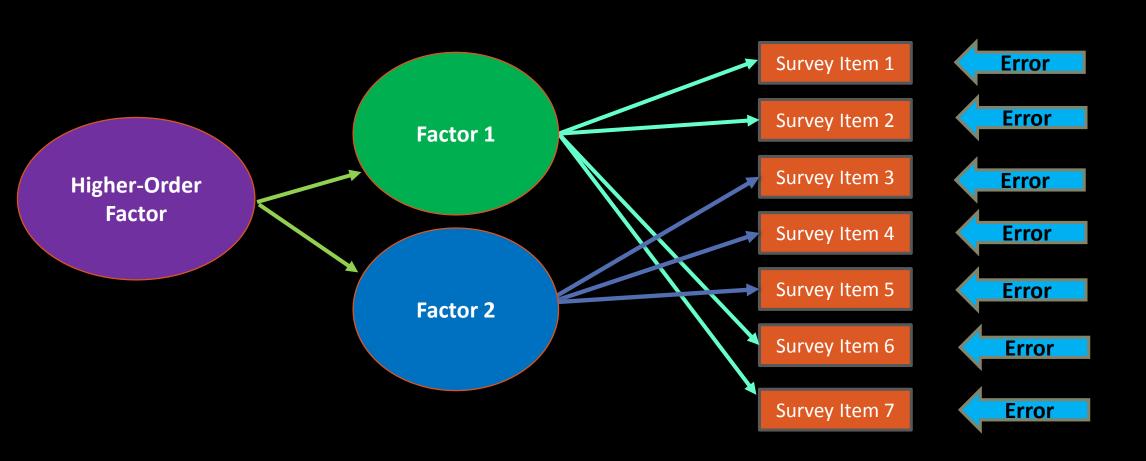
CONFIRMATORY FACTOR ANALYSIS

Table 1Fit Indices and Tentative Thresholds for Evaluating Model Fit

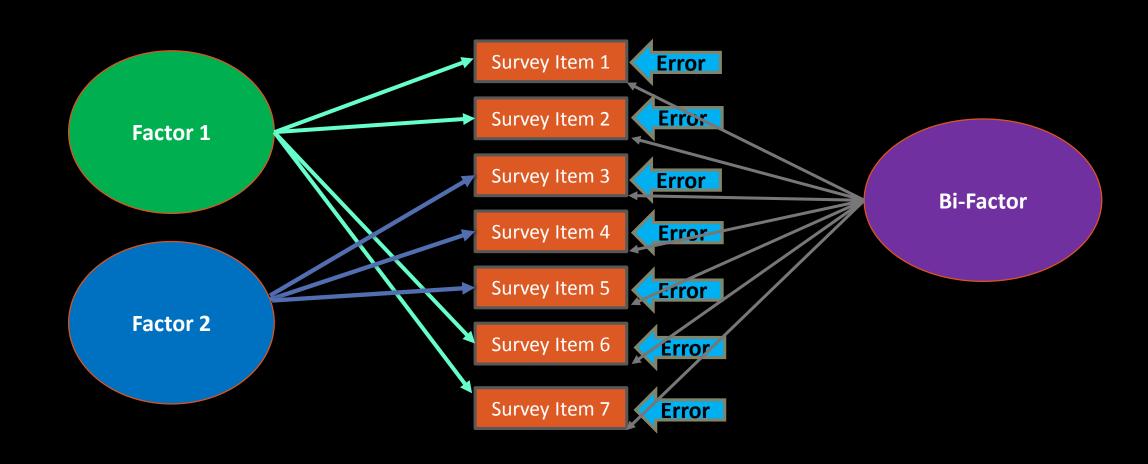
	1070				
		Absolute Fit Indices			
Index	Abbreviation	Strong Fit	Acceptable Fit	Poor Fit	
Chi-square	χ^2 or CMIN	p -value > .05 or χ^2 to $df \le 1$	χ^2 to $df \le 2$ or 3	χ^2 to df > 3	
Standardized root mean square residual	SRMR	< .05	.06 to .08	> .08	
Root mean square error of approximation	RMSEA	< .05, report confidence interval	.06 to .08 (.081 to .10 can denote a somewhat acceptable fit)	> .10	
Goodness-of-fit index & Adjusted goodness-of-fit index	GFI/AGFI	≥ .97	≥ .95 (≥ .90 to .94 can denote a somewhat acceptable fit)	< .90	
		Incremental Fit Indices			
Index	Abbreviation	Strong Fit	Acceptable Fit	Poor Fit	
Comparative fit index	CFI	≥ .97	.95 to .90	< .90	
Normed fit index	NFI	≥.97	.95 to .90	< .90	
Incremental fit index	IFI	≥.97	.95 to .90*	< .90	
Tucker-Lewis index	TLI	≥.97	.95 to .90	< .90	
		Parsimonious Fit Indices	SV		
Index	Abbreviation	Strong Fit	Acceptable Fit	Poor Fit	
Parsimony-adjusted goodness-of-fit index	PGFI		lices range from 0 to 1 and s between different mode		
Parsimony-adjusted normed fit index	PNFI	closer to 1 indicate a stronger fit. (Kalkbrenner			

Model 1

- Evaluate the following model fit in terms of excellent, acceptable, or poor
 - *CMIN* = $\chi 2$ (77) = 200.01, p < .001, χ^2 to df = 2.60
 - Comparative Fit Index (CFI) = .97
 - Root mean square error of approximation (RMSEA) = .04, 90% CI (.02, .06)
 - Standardized root mean square residual (SRMR) = .03


Model 2

- Evaluate the following model fit in terms of excellent, acceptable, or poor
 - *CMIN* = $\chi 2$ (74) = 357.93, p < .001, χ^2 to df = 4.84
 - Comparative Fit Index (*CFI*) = .90
 - Root mean square error of approximation (RMSEA) = .09, 90% CI (.08, .10)
 - Standardized root mean square residual (SRMR) = .14


Model 3

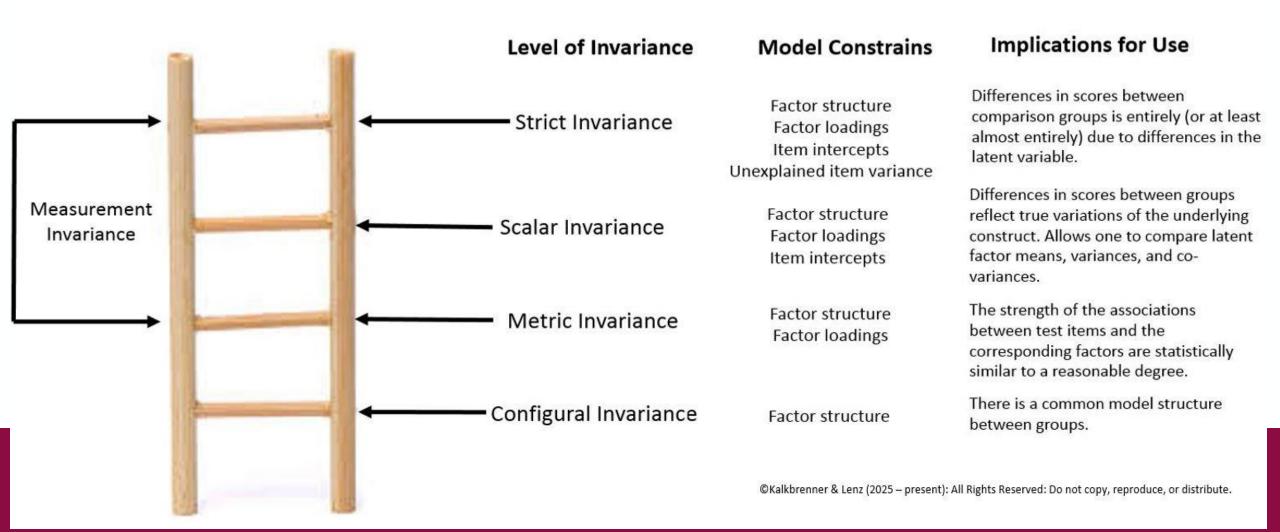
- Evaluate the following model fit in terms of excellent, acceptable, or poor
 - *CMIN* = $\chi 2$ (140) = 400.33, p < .001, χ^2 to df = 2.86
 - Comparative Fit Index (CFI) = .91
 - Root mean square error of approximation (RMSEA) = .09, 90% CI (.07, .12)
 - Standardized root mean square residual (SRMR) = .08

HIGHER-ORDER CONFIRMATORY FACTOR ANALYSIS

BI-FACTOR CONFIRMATORY FACTOR ANALYSIS

Multiple-Group Confirmatory Factor Analysis

- Measurement Invariance Testing
 - Assessing the <u>psychometric equivalence</u> of <u>a measure or construct across groups</u> or <u>across time</u>.
 - Seeking to demonstrate that a construct has the same meaning across groups or across repeated measures.
 - Can be tested in an item-response theory or a structural equation modeling (SEM) framework.
 - Currently, SEM is the more widely used approach


 Table 2

 Quick Reference: MG-CFA Interpretive Guidelines

Fit Index	Interpretative Guideline
Comparative fit index (CFI)	$<\Delta~0.010$
Root mean square error of approximation (RMSEA)	$<$ Δ 0.015
Standardized root mean square residual (SRMR)	$<$ Δ 0.030 for metric invariance and $<$ 0.015 for scalar invariance
McDonald's Noncentrality Index (McNCI)	$<$ Δ 0.020

©Kalkbrenner & Lenz (2025-present): All Rights Reserved: Do not copy, reproduce, or distribute.

Measurement Invariance Ladder

A Brief Note on Test Score Reliability

- Consistency or stability of test scores.
 - To what extent would a test taker score the same if they took the test over, and over, and over again?
- Contrast with validity evidence of test scores.
- Several reliability estimation methods are available.
 - Internal consistency reliability is a popular method
 - Cronbach's Coefficient Alpha (α) vs. McDonald's Coefficient Omega (ω)
- For more on reliability: https://doi.org/10.1080/07481756.2023.2283637

References

- American Educational Research Association., American Psychological Association., National Council on Measurement in Education., & Joint Committee on Standards for Educational and Psychological Testing (U.S.). (2014). Standards for Educational and psychological testing. https://www.apa.org/science/programs/testing/standards
- Chen, F.F. (2007). Sensitivity of goodness of fit indexes to lack of measurement invariance. Structural Equation Modeling, 14(3), 464-504. https://doi.org/10.1080/10705510701301834
- Chen, C. C., Lau, J. M., Richardson, G. B., & Dai, C.-L. (2020). Measurement invariance testing in counseling. *Journal of Professional Counseling, Practice, Theory, & Research, 47*(2), 89–104. https://doi.org/10.1080/15566382.2020.1795806
- Dimitrov, D. M. (2010). Testing for factorial invariance in the context of construct validation. *Measurement and Evaluation in Counseling and Development, 43*(2), 121-149. doi:10.1177/0748175610373459
- Kalkbrenner, M.T. (2024). Choosing between Cronbach's coefficient alpha, McDonald's coefficient omega, and coefficient H: Confidence intervals and the advantages and drawbacks of interpretive guidelines. Measurement and Evaluation in Counseling and Development. 57(2), 93-105. https://doi.org/10.1080/07481756.2023.2283637
- Kalkbrenner, M.T. (2024). Choosing between Cronbach's coefficient alpha, McDonald's coefficient omega, and coefficient H: Confidence intervals and the advantages and drawbacks of interpretive guidelines. Measurement and Evaluation in Counseling and Development. 57(2), 93-105. https://doi.org/10.1080/07481756.2023.2283637
- Lenz, A. S. (2025). Making sense of test score validity in counseling assessment. *Measurement and Evaluation in Counseling and Development*, 58(1), 1-6. https://doi.org/10.1080/21501378.2022.2029411
- Neukrug, E.S., & Fawcett, C.R. (2020). Essentials of testing and assessment: A practical guide for counselors, social workers, and psychologists (Enhanced 3rd ed.). Cengage
- Putnick, D. L., & Bornstein, M. H. (2016). Measurement invariance conventions and reporting: The state of the art and future directions for psychological research. *Developmental Review,* 41(1), 71–90. https://doi.org/10.1016/j.dr.2016.06.004
- Sink, C.A., (2016). Advanced research design and assessment [PowerPoint Slides]. Old Dominion University.
- Steger, M. (2007). Structural Validity of the Life Regard Index. *Measurement and Evaluation in Counseling and Development*, 40(2), 97–109. https://doi.org/10.1080/07481756.2007.11909808

Contact Information

Mike Kalkbrenner

Professor

Department of Counseling and Educational Psychology

College of Health, Education, and Social Transformation

New Mexico State University

Email: mkalk001@nmsu.edu

Website: https://cep.nmsu.edu/facultydirectory/dr.-michael-kalkbrenner.html

Questions or Comments

